GRI 909/GRI99 Simulator Usage

Robert M Supnik

01-Dec-2008

Copyright (c) 1993-2008, Robert M Supnik

COPYRIGHT NOTICE and LICENSE are at the end of this document.

Contents

- Simulator Files
- GRI-909/GRI-99 Features
- CPU
- Programmed I/O Devices
 - S42-004 High Speed Reader (HSR)
 - S42-006 High Speed Punch (HSP)
 - S42-001 Teletype Input (TTI)
 - S42-002 Teletype Output (TTO)
 - Real-Time Clock (RTC)
- Symbolic Display and Input
- COPYRIGHT NOTICE and LICENSE

This memorandum documents the GRI-909 simulator.

Simulator Files

- sim/
 - scp.h
 - sim_console.h
 - sim_defs.h
 - sim fio.h
 - $-\sin_{\text{rev}}$.
 - sim sock.h
 - sim_timer.h
 - $sim_tmxr.h$
 - scp.c
 - sim_console.c
 - $sim_fio.c$
 - sim_sock.c

- $\ sim_timer.c$
- sim_tmxr.c
- sim/gri/1
 - gri_defs.h
 - gri_cpu.c
 - gri_stddev.c
 - gri_sys.c

GRI-909/GRI-99 Features

The GRI-909 is configured as follows:

device name(s)	simulates
CPU	GRI-909/GRI-99 CPU with up to 32KW of memory
HSR	S42-004 high speed reader
HSP	S42-004 high speed punch
TTI	S42-001 Teletype input
TTO	S42-002 Teletype output
RTC	real-time clock

The GRI-909 simulator implements the following unique stop conditions:

- An unimplemented operator is referenced, and register STOP_OPR is set
- An invalid interrupt request is made

The LOAD command has an optional argument to specify the load address:

• LOAD filename {starting address}

The LOAD command loads a paper-tape bootstrap format file at the specified address. If no address is specified, loading starts at location 200. The DUMP command is not supported.

CPU

The only CPU options are the presence of the extended arithmetic operator and the size of main memory.

Command	Function
SET CPU GRI909	set CPU model to GRI-909
SET CPU GRI99	set CPU model to GRI-99
SET CPU AO	enable extended arithmetic operator
SET CPU EAO	disable arithmetic operator
SET CPU EAO	enable extended arithmetic operator
SET CPU NOEAO	disable extended arithmetic operator
SET CPU GPR	enable general registers

Command	Function
SET CPU NOGPR SET CPU BSWPK SET CPU NOBSWPK SET CPU 4K SET CPU 12K SET CPU 16K SET CPU 20K SET CPU 24K SET CPU 24K SET CPU 28K SET CPU 28K SET CPU 32K	disable general registers enable byte swap/pack disable byte swap/pack set memory size = 4K set memory size = 8K set memory size = 12K set memory size = 16K set memory size = 20K set memory size = 24K set memory size = 28K set memory size = 32K

If memory size is being reduced, and the memory being truncated contains non-zero data, the simulator asks for confirmation. Data in the truncated portion of memory is lost. Initial memory size is 32K. The default configuration is a GRI-909 with AO, EAO, and GPR.

CPU registers include the visible state of the processor as well as the control registers for the interrupt system.

name	size	comments
$\overline{\text{SC}}$	15	sequence counter
AX	16	arithmetic operator input register 1
AY	16	arithmetic operator input register 2
AO	16	arithmetic operator output register
TRP	16	TRP register
MSR	16	machine status register
ISR	16	interrupt status register
BSW	16	byte swapper buffer
BPK	16	byte packer buffer
GR1GR6	16	general registers 1 to 6
XR	16	index register (GRI-99 only)
BOV	1	bus overflow (MSR<15>)
L	1	link (MSR<14>)
FOA	2	arithmetic operator function (MSR<9:8>)
AOV	1	arithmetic overflow (MSR<0>)
IR	16	instruction register (read only)
MA	16	memory address register (read only)
SWR	16	switch register
DR	16	display register
THW	6	selects operator displayed in DR
IREQ	16	interrupt requests
ION	1	interrupts enabled

name	size	comments
INODEF	1	interrupts not deferred
BKP	1	breakpoint request
SCQ[0:63]	15	SC prior to last jump or interrupt; most recent SC change
		first
STOP_OP	R1	stop on undefined operator
WRU	8	interrupt character

Programmed I/O Devices

S42-004 High Speed Reader (HSR)

The paper tape reader (HSR) reads data from or a disk file. The POS register specifies the number of the next data item to be read. Thus, by changing POS, the user can backspace or advance the reader.

The paper tape reader implements these registers:

name	size	comments
BUF	8	last data item processed
IRDY	1	device ready flag
IENB	1	device interrupt enable flag
POS	32	position in the input file
TIME	24	time from I/O initiation to interrupt
STOP_IOE	1	stop on I/O error

Error handling is as follows:

error	STOP_IOE	processed as
not attached	1	report error and stop
	0	out of tape
end of file	1	report error and stop
	0	out of tape
OS I/O error	X	report error and stop

S42-006 High Speed Punch (HSP)

The paper tape punch (HSP) writes data to a disk file. The POS register specifies the number of the next data item to be written. Thus, by changing POS, the user can backspace or advance the punch.

The paper tape punch implements these registers:

name	size	comments
BUF	8	last data item processed
ORDY	1	device ready flag
IENB	1	device interrupt enable flag
POS	32	position in the output file
TIME	24	time from I/O initiation to interrupt
STOP_IOE	1	stop on I/O error

Error handling is as follows:

error	STOP_IOE	processed as
not attached	1	report error and stop
	0	out of tape
OS I/O error	X	report error and stop

S42-001 Teletype Input (TTI)

The Teletype interfaces (TTI, TTO) can be set to one of four modes, KSR, 7P, 7B, or 8B:

modinput characters	output characters	
KSRlower case converted to	lower case converted to upper case,	
upper case, high-order bit	high-order bit cleared, non-printing	
set	characters suppressed	
7P high-order bit cleared	high-order bit cleared, non-printing	
	characters suppressed	
7B high-order bit cleared	high-order bit cleared	
8B no changes	no changes	

The default mode is KSR.

The Teletype input (TTI) polls the console keyboard for input. It implements these registers:

name	size	comments
BUF	8	last data item processed
IRDY	1	device ready flag
IENB	1	device interrupt enable flag
POS	32	number of characters input
TIME	24	keyboard polling interval

S42-002 Teletype Output (TTO)

The Teletype output (TTO) writes to the simulator console window. It implements these registers:

name	size	comments
BUF	8	last data item processed
ORDY	1	device ready flag
IENB	1	device interrupt enable flag
POS	32	number of characters output
TIME	24	time from I/O initiation to interrupt

Real-Time Clock (RTC)

The real-time clock (CLK) implements these registers:

name	size	comments
RDY IENB TIME	1 1 24	device ready flag interrupt enable flag clock interval

The real-time clock autocalibrates; the clock interval is adjusted up or down so that the clock tracks actual elapsed time.

Symbolic Display and Input

The GRI-909 simulator implements symbolic display and input. Display is controlled by command line switches:

Switch	
-a	display as ASCII character
-c	display as two packed ASCII characters
-m	display instruction mnemonics

Input parsing is controlled by the first character typed in or by command line switches:

input	
or -a	ASCII character
or -c	two packed ASCII characters
alphabetic	instruction mnemonic

input	
numeric	octal number

Instruction input uses modified GRI-909 basic assembler syntax. There are thirteen different instruction formats. Operators, functions, and tests may be octal or symbolic; jump conditions and bus operators are always symbolic. Addresses may be prefixed with #, indicating indexing (GRI-99 only).

Function out, general

Syntax: FO function, operator

Function symbols: INP, IRDY, ORDY, STRT

Example: FO ORDY,TTO

Function out, named

Syntax: FO{M|I|A} function

Function symbols: M: CLL, CML, STL, HLT

I: ICF, ICO

A: ADD, AND, XOR, OR

Example: FOA XOR

Sense function, general

Syntax: SF operator,{NOT} tests

Test symbols: IRDY, ORDY Example: SF HSR, IRDY

Sense function, named

Syntax: SF{M|A} {NOT} tests

Test symbols: M: POK, BOV, LNK A: SOV, AOV

Example: SFM NOT BOV

Register to register

Syntax: RR{C} src,{bus op,}dst Bus op symbols: P1, L1, R1

Example: RRC AX,P1,AY

Zero to register

Syntax: ZR{C} {bus op,}dst
Bus op symbols: P1, L1, R1

Example: ZR P1,GR1

Register to self

Syntax: RS{C} dst{,bus op}
Bus op symbols: P1, L1, R1

Example: RS AX,L1

Jump unconditional or named condition

Syntax: J{U|0|N}{D} address

Example: JUD 1400

Jump conditional

Syntax: JC{D} src,cond,address

Cond symbols: NEVER, ALWAYS, ETZ, NEZ, LTZ, GEZ, LEZ, GTZ

Example: JC AX, LEZ, 200

Register to memory

syntax: RM{I|D|ID} src,{bus op,}address

Bus op symbols: P1, L1, R1 Example: RMD AX, P1, 1315

Zero to memory

Syntax: ZM{I|D|ID} {bus op,}address

Bus op symbols: P1, L1, R1

Example: ZM P1,5502

Memory to register

Syntax: MR{I|D|ID} address, {bus op,}dst

Bus op symbols: P1, L1, R1 Example: MRI 1405,GR6

Memory to self:

Syntax: MS{I|D|ID} address{,bus op}

Bus op symbols: P1, L1, R1

Example: MS 3333,P1

COPYRIGHT NOTICE and LICENSE

The following copyright notice applies to the SIMH source, binary, and documentation:

Original code published in 1993-2008, written by Robert M Supnik

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN

CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of Robert M Supnik shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from Robert M Supnik.